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ABSTRACT TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"Recent developments in artificial intelligence and decision analysis suggest reassessing theapproaches commonly taken to the design of knowledge-based systems. Competentsystems are based on models known as influence diagrams, which graphically capture adomain's basic objects and their interrelationships. Among the benefits offered byinfluence diagrams is their underlying psychological and mathematical validity. Unlikestandard rule- or frame-based systems, which are well motivated but poorly justified,competent systems should (according to an underlying theory) successfully meet a user'sdesires. For most users, however, theoretical justification is reassuring, but not crucial.To them, the most salient feature of influence diagram modeling is the precision and claritythat it forces on both the domain expert providing information and the system designerbuilding the model. This paper presents a user-oriented perspective of our verticalapproach to system design---one that promises efficient development and rapid delivery oftheoretically justified systems tailored to user need.

Introduction

What is a "competent" system? Why should anyone be interested in systems that aremerely competent when we already have "expert" systems? And what makes thesesystems so remarkably "effective, efficient, and deliverable?" The title of this paper wasdesigned to be provocative; the history of intelligent (or knowledge-based or expert)systems has taught us to be wary of new catch phrases, new promises, new hype. In fact,it is precisely this type of skepticism that led our group, an interdisciplinary research teamwith backgrounds in artificial intelligence (AI), decision analysis (DA), psychology,decision support systems (DSS), financial forecasting, and medical informationprocessing, to begin assessing the technology underlying knowledge-based systems.This paper does not detail our work at the level that might be desired by an academicresearcher in any one of these fields. Instead, it targets individuals and institutions armedwith real tasks---diagnoses, forecasts, decisions, training exercises, etc.--that should beamenable to AI technology, but have yet to be successfully automated. We will provide thereader with a brief outline of our underlying assumptions, our techniques for designingsystems, and c ar experiences with two real systems: Pathfinder, (which diagnosesdiseases of the lymph system), and ARC01, (which forecasts the price of crude oil)1.Readers should emerge convinced that our approach is widely applicable, effective, andefficient, that it promises to lead to rapidly deliverable systems, and that it warrantsconsideration for the tasks that they wish to automate.

1 The author was primarily responsible for the design of ARCM; all unpublished information is based onpersonal experience. Unpublished reports about Pathfinder are based on the author's conversations with itsdesigners, David Heckerman, Eric Horvitz, and Bharat Nathwani.
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Motivation

Through the late 1970s, expert systems were regarded as expensive, large-scale,
experimental research projects; by the mid-1980's, they had become accessible to anyone
owning a personal computer. The late 1980's witnessed reductions in R&D, as many
initial boosters of the technology became disillusioned; poor system performance, budget
overruns, and unacceptable returns on investment were common experiences. Both the
lionization of expert systems and their subsequent fall from grace, however, were
premature. Designers of early systems---like the pioneers of most new technologies---
made some mistakes. A decade of experiences, however, provides the data necessary to
sort the wheat from the chaff (or the baby from the bathwater, for the urbanites among us).

Stated succinctly, the designers of most existing expert systems attempted to capture the
techniques employed by human experzs, to model these techniques, and then to automate
their models. Their elicitation (or knowledge acquisition) phases were usually guided by
questions of the form, "what would you do in the following situation?," and responses
were modeled as either production systems (large collections of IF. ..THEN. . . rules)
or frames (descriptions of commonly encountered situations) (8). The resultant systems
were expected to simulate expert humah behavior.

Despite the obvious appeal of this approach, it lacks experiential, psychological, or
mathematical justification. Experientially, it deviates both from the way in which expertise
is attained and from the way in which devices are invented. First, people who set out to
become experts in a narrow subspecialty rarely begin by focusing exclusively on their area
of specific interest; they begin as broad-based novices or apprentices, narrow their focus as
their training progresses and their competence increases, and eventually hone in on area of
expertise. Experts, then, are simply the individuals with the highest degrees of competence
among all people operating in a domain (hence the name competent systems). Second, few
(if any) inventions have been based on mimicry; they usually exploit new technologies to
address specific needs. Jets, for example, do not mimic birds, nor radar eyes. These
inventions capture some of the characteristics of their natural counterparts, add a few
unique features facilitated by their underlying technologies, and provide elegant solutions to
important problems. Psychologically, the elicitation of procedural expertise is
demonstrably inaccurate; people are notoriously poor at knowing what they know (6).
Mathematically, production systems and frames both lack underlying formal theories (7).
In short, systems oriented around mimicking human expcnise were motivated more by a
desire to see them work than by any reason to believe that they should work.

Competent Systems

Competent systems, and their underlying approach to system design, originated with our
desire to design useful systems that are based on valid underlying theories and models (2).
We are interested in developing a vertically integrated theory of system design---one that
originates with the needs of a user community, captures information provided by an expert
in a psychologically testable model, and is based on a formal and precise mathematical
theory. Given our current target audience, the most relevant aspect of competent system
design is the way in which it addresses user needs. The existence of validating
psychological and mathematical theories, however, should reassure potential users and
sponsors about the likelihood of a reasonable return on their investments.

Since most users interested in developing knowledge-based systems for their domain of
expertise are in greater need of tools than they are of either colleagues or mentors, the
design of a simulated expert is unnecessary as well as unrealistic. Systems should be
designed to capture on understanding of a domain and its tasks rather than the behavior of
its experts; task analyses must provide the first phase of system design. This shnple idea-
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--that knowledge-based systems should model domains and solve problems, rathei than
model experts and simulate behavior---forms the basis of the competent system design
theory.

Core Problems
The first requirement of anyone wishing to become an expert is that he or she

understand the domain, its objects, and the relationships among them. Novices and
trainees must also begin by mastering commonly occurring tasks before they progress to
rarer, more difficult, and potentially more important problems. Knowledge-based systems,
like people, should enter a new domain at its most basic level. Only systems that have
demonstrated an understanding of fundamental objects mid a inastery of basic tasks should
be allowed to progress to the next level. Thus, the init'al stages of a task analysis should
lead to the selection of an appropriate "core" problem for the domain. Although the
definition of a core problem must remain rather loose, some of its general characteristics
are enumerable. A core problem should be .. .

1

1

.. . well-defined and within the realm of human expertise.

.. . relevant to at least some of the people in the domain.

.. . just beyond the state-of-the-art.

... accompanied by a performance metric.

. . . the simplest problem that satisfies the above.

The adoption of a core problem corresponds to the strategy of selecting problems that
appear to be relevant and solvable rather than those that look most. exciting. Despite their
relative simplicity, core problems are rarely trivial, as the case studies of Pathfinder and
ARCO1 should demonstrate

Pathfinder, designed at Stanford University and USC (4), operates in the domain of
hematopathology (diseases of the human lymph system). The first---and most obvious---
question that a system designer could pose to an expert hematopathoiogist, is "How do I
diagnose a disease of the lymph system?" The procedural orientation of this question,
however, would lead to precisely the type of mimicry that we are trying to avoid. Thus, a
better question would be "What information might I need to diagnose a disease of the
lymph system?" Answers to this question are both whin the realm of human expertise and
relevant to many of the people operating in the domain. Nevertheless, simpler questions do
exist: "What information might I need to differentiate between a given pair of diseases of
the lymph system?" is obviously simpler and within the realm of human expertise, but
unlikely to be relevant to anyone. The question "What information might I need to
differentiate between each pair of diseases of the lymph system?" on the Dther hand,
possesses all characteristics of a core problem. It is within the realm of human expertise,
relevant to virtually everyone in the domain, and extremely simple. By iterating a
seemingly trivial problem throughout the domain, Pathfinder's designers applied a divide-
and-conquer strategy to knowledge-based system design, arid thus eased both model
construction and validation. In so doing, they also furthered the claim that resolution of
their problem was just beyond the state-of-the-art, and facilitated the use of case histories
with known diagnoses as a body of test data against which system performance could be
measured.

ARC01, designed at USC and the Atlantic Richfield Company (ARCO) (3), operates
in a very different setting: the crude oil market. ARCO1 was commissioned by, and
models the expertise of, members of ARCO's corporate planning group. Thus, the
overriding question of interest is "How do I plan resource allocation for a major oil
company?" Answers to this question are both procedural and extremely complex; although
it might be a reasonable ultimate objective, it is a poor choice for the domain's first
automated system. A good preliminary question, then, is "Wliat is the most basic piece of
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non-trivial information needed for corporate planning?" The answer---a forecast of the
price of oil---motivates an appropriate core question, "What information might I need to
foredast oil prices?" Once again, answers to this question are within ay.: realm of human
expertise (at least to the extent that forecasting is tractable), they are obviously relevant to
everyone in the domain, and the existence of forecasting tools indicates that stronger
forecasts are just beyond the state-of-the-art. Although simpler questions may exist, none
are obvious. This core question, like Pathfinder's, introduced some common design
techniques into the realm of knowledge-based systems, (in this case, subscripted
variables), that greatly eased the modeling and validation phases.

Influence Diagrams
The determination of an appropriate core problem is more a prerequisite for successful

system design than a part of the actual design effort. The first true design phases---
knowledge elicitation and formal modeling---must lead to an understanding of the domain's
basic objects and of their direct interrelationships. The most straightforward representation
of objects and relationships is neither a production rule nor a frame, but rather a graph.

In the graph shown below, A, B, and C each represent distinct objects, while the arcs
from A to C and from B to C indicate that that the values of A and B each have some sort of
influence on the value of C. In a medical domain, for example, A could represent the
disease pneamonia, B the disease common cold, and C the symptom coughing. The arcs
could then represent probabilities: the A to C arc indicates that pneumonia causes coughing
with probability p, and the B to C arc that a cold causes coughing with probability q. In an
economic setting, A might represent supply, B demand, C price, and the arcs an
econometric fomiula describing price as a function of supply and demand.

Example 1

A

B

,

This simple example masks a modeling technique of tremendous power and sophistication.
Each obect in the domain---and its relationships to the objects that influence it (and that it
influerces)---may be studied in relative isolation and modeled in its most natural and
elegant form. The only restriction is that each node must contain a method for generating a
single value (for the object that it models) for every combination of influences (i.e., sets of
values assigned to the variables that point to it). In other words, any valid, fully specified,
mathematical or probabilistic relation can be incorporated into the model. This flexibility
stands in stark contiast to the relative uniformity required by most commercially avaiiable
shells.

Graphical models of this sort have been studied under several names, most notably
influence diagrams and belief networks. (Decision trees are a popular and widely used
special case of these more general models). Mathematical and statistical analyses of
influence diagrams have led to a variety of algorithms for tracking belief, propagating
information, drawing inferences, simulating scenarios, anti answering questions (7).
Psychological studies have developed techniques for eliciting reliable and internally
consistent sets of beliefs from experts, but only when these beliefs are represented as
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probabilities and other mathematical quantities (9). Thus, the models underlying competent
systems can be justified along both mathematical and psychological dimensions---wc know
how to build good models, and we know how to manipulate the numbers within the
models once they have been built (5). Furthermore, influence diagrams force domain
experts to be precise about the assumptions that underly their analyses and to focus on
direct relationships that are (generally) well understood; indirect relationships are implicit in
the model, and can be calculated by functional composition. This degree of focus is crucial
in domain modeling. The graphs underlying Pathfinder and ARC01, shown below, are far
too complex to be designed holistically. They each contain in the neighborhood of 150
different variables, equations, and conditional probabilities. Only careful decomposition of
the domain into small groups of closely related objects made the modeling possible (1).

[INSERT THE PATHFINDER INFLUENCE DIAGRAM ABOUT HERE]

[INSERT THE ARCO1 INFLUENCE DIAGRAM ABOUT HERE]

Conclusions

This paper provided an overview of a new approach to the design of knowledge-based
systems based on recent results from AI, DA, statistics, and psychology. The competent
systems paradigm involves starting small and progressing through a series of increasingly
complex problems. This approach promises efficient development and rapid delivery. Our
experiences with Pathfinder and ARCO1 show that even systems restricted to core
problems can be powerful and effective. Users in many domains should want to adopt our
approach and models because their focus on simple, well-understood components of the
domain address immediate needs, while the psychological and mathematical validity of their
underlying models promises a high likelihood of success.

Competent systems share many characteristics with expert systems, yet differ from
their conventional rule-based and frame-based counterparts in a few important areas: they
stress the importance of incremental improvement, and they are based on precise, well-
understool, formal models. Design principles, however, are just that: principles. The
design of an actual influence diagram remains an art. Good design teams must possess
experdse in both the domain being modeled and the modeling techniques being employed.
Implicit in the availability of commercially marketed shells is that experts should be able to
encode their own rule bases, model their own thoughts, and design their own systems.
The sophistication and care necessary to model a domain as an influence diagram,
however, emphasizes the need for a well-trained modeling expert. Influence diagrams
must be viewed as the intellectual equivalent of industrial power tools; although anyone can
use them, few will successfully build the systems that they desire, and many risk hurting
themselves trying. Professionally constructed networks, on the other hand, promise to
generate competent systems that are, in fact, effective, efficient, and deliverable.
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